中国科学院大连化学物理研究所 优秀博士后奖励基金申请表

申请人:	Arindam Modak
研究组:	506 组
学科专业:	物理化学
合作导师:	杨启华 研究员
填表日期:	2016 年 4 月 29 日

中国科学院大连化学物理研究所制

姓	姓名 Ari		Arindam Modak	性	别	見	3
出生	生日期	1	1984年6月22日		族	印	度
学历/学位			博士	专业技术职 务		Ŧ	Ē
毕业院校 Indian of sci		Indian As of scienc	Indian Association for the cultivation of science, Jadavpur, Kolkata, India		业	Materials	chemistry
(拟)) 入站时 间	2	0015年11月5日	入站	性质	√统招统分	□在职人员
E-	-Mail	arindam_	modak_2006@yahoo.co.in	联系	电话		
	起止	年月	所在单位/专业	k		所获	学位
业	2003 年 9 月至 2006 年 6 月		University of Burg	lwan		B.Sc (Firs	st class in istry)
子习简历	2006年9月至 2008年6月		Indian Institute of Tec Kharagpur	hnology,		M.Sc (First class in Chemistry)	
77	2008年9月至 2014年10月		Indian Association for the cultivation of science, University of Calcutta, India		Ph.D.		
	起止年月		所在单位		职	务	
工作经历	2013 年 7 月至 2015 年 10 月		Toyota Central R & D Lab	s. INC,	Japan	Visiting R (ACT-C felle	esearcher project ow)
	2015 年 11 月至 2015 年 12 月		Indian Association for the Science, India	Cultivation of		Research Assistant	
	2015年12月至今		Dalian Institute of chemi China	cal phys	sics,	Post doc. Qihua	with Prof. Yang

博士论文题目	Designing The Functional Building Blocks For Syntheses Of Organic And Organic-Inorganic Hybrid Porous Materials
指导教师姓名	Prof. Asim Bhaumik

(限 800 字)

The research embodied in the present thesis entitled "Designing The Functional Building Blocks For Syntheses Of Organic And Organic-Inorganic Hybrid Porous Materials" deals with synthesis and characterization of several novel nanoporous organic and hybrid organic inorganic materials and their applications in the field of gas adsorption and storage, heterogeneous catalysis, ion-exchange, chromatography and so on. Template directed synthesis of phloroglucinol diimine functionalized pore wall has been developed and showed as outstanding catalytic support for metal mediated catalysis. Further, surfactant templating approach for allylic polymerization of Triazine based monomer for the formation of pure organic polymer with hexagonal arrangement of mesopores has been shown to have excellent scaffold for metal mediated catalysis. On the other hand porphyrin functionalized pure organic polymers are synthesized which act as good sorbent for adsorption and storage of CO2; thereby largely contributes to curb global pollution. The thesis has been presented in eight chapters.

博 士 学

Chapter 3 illustrates the synthesis of hexagonal ordered phloroglucinol diimine functionalized periodic mesoporous organosilica (LHMS-3). Pd-LHMS-3 showed excellent catalytic activity and trans-selectivity in Heck C–C bond formation reactions for the synthesis of a series of value-added aromatic and aliphatic olefins.

Chapter 4 reports about the synthesis of 'Triazine' functionalized hexagonal ordered organic polymer via organic-organic radical polymerization of 2,4,6-triallyloxy-1,3,5-triazine (TAT) in aqueous medium in the presence of an anionic surfactant (sodium dodecyl sulfate) as template. For several C-C cross coupling reactions. Pd-MPTAT shows high reusability for such catalysis.

Chapter 5 describes the unique strategy (extended aromatic electrophilic substitution of porphyrin chemistry) for the synthesis of iron containing porous organic polymers containing porphyrin and metalloporphyrin ring.Porphyrin functionalized high surface area organic polymers (Fe-POP-1, Fe-POP-2 and Fe-POP-3) possess outstanding CO2 storage ability at low pressure (19 wt%, 1 atm).

Chapter 6 delineates the synthesis of Titanium grafted periodic mesoporous organosilica matrix (Ti-LHMS-3). Presence of Ti promotes the activation of olefins in presence of tertiary butylhydroperoxide for the formation of epoxides.

Chapter 7 deals with the synthesis of palladium grafted periodic mesoporous organosilica (Pd-LHMS-3) for several C-C cross coupling reactions and cyanation reactions. This include Fluoride free Hiyama cross coupling reactions between aryl halides and aryl silane, Cu free Sonogashira cross coupling reactions between aryl halides and terminal alkynes and cyanation of aryl halides in presence of K4[Fe(CN)6] as non-toxic cyanide source.Pd-LHMS-3 shows high activity than mesoporous silica and can be reused for many cycles without being affected in catalysis.

位 论 文

摘要

	1、	主持或参与项目情况:						
	序 号	项目名称	项目来源	项目金 额	起止年度	角色		
	2、论文发表情况:							
	序	论文题目	期刊名	影响因	发表年度/卷期 /页码	排序		
	亏 1	A new periodic mesonorous	I Mater Chem	5	2010 20	1		
	1	organosilica containing	J. Mater. Chem.	0.020	2010, 20, 8099	1		
		diimine-phloroglucinol,			••••			
		Pd(II)-grafting and its excellent						
		catalytic activity and trans-selectivity						
		in C–C coupling reactions.						
	2	A novel mesoporous silica-grafted	Green chem.	8.02	2011, 13,	2		
λ		organocatalyst for the Michael			586			
站		addition reaction, synthesized via						
前期科研		the click method		0.02	0011 10			
	3	Triazine functionalized ordered	Green chem.	8.02	2011, 13,	I		
		support for Pd mediated C C			1317			
研		cross-coupling reactions in water						
ſf	4	Facile C–S coupling reaction of	Dalton Trans	4 197	2011 40	2		
伔笱	•	aryl iodide and thiophenol			5228	-		
向介		catalyzed by Cu-grafted furfural						
71		functionalized mesoporous						
		organosilica.						
	5	Highly efficient mesoporous base	J. Mol. Catal.	3.615	2011, 335,	2		
		catalyzed Knoevenagel	A: Chem.		236			
		condensation of different aromatic						
		aldehydes with malononitrile and						
		subsequent noncatalytic						
	6	Novel Organic-Inorganic Hybrid	Adv Synth	5 663	2011 353	3		
	0	Mesoporous Silica Supported	Auv. Synth. Catal	5.005	2011, 555, 1897	5		
		Oxo-Vanadium Schiff Base for						
		Selective Oxidation of Alcohols.						
	7	One-pot efficient Heck coupling in	J. Mol. Catal.	3.615	2011, 350,	2		
		water catalyzed by palladium	A: Chem.		40			
		nanoparticles tethered into						
		mesoporous organic polymer.						

8	Phloroglucinol derivatives as	International	0.82	2011, 2,	2
	potential anti-ulcer compound that	Journal of		237	
	inhibits matrix metalloproteinase-9	Pharmaceutical			
		Applications			
9	Porphyrin based porous organic	Chem.	6.834	2012, 48,	1
	polymers: novel synthetic strategy	Commun.		248	
	and exceptionally high CO2				
	adsorption capacity.				
10	One-pot thioetherification of aryl	Chem.	6.834	2012, 48,	2
	halides with thiourea and benzyl	Commun.		8000	
	bromide in water catalyzed by				
	Cu-grafted furfural imine				
	functionalized mesoporous				
	SBA-15				
11	Pd-grafted periodic mesoporous	Green chem.	8.02	2012, 14,	1
	organosilica: an efficient			2840	
	heterogeneous catalyst for Hiyama				
	and Sonogashira coupling, and				
	cyanation reaction				
12	Triazine functionalized ordered	RSC Advances	3.84	2012, 2,	2
	mesoporous organosilica as a novel			11306.	
	organocatalyst for the facile				
	one-pot synthesis of				
	2-amino-4H-chromene under				
	solvent-free conditions.				
13	Functionalized mesoporous	J. Mol. Catal.	3.615	2012, 363,	3
	materials as efficient	A: Chem.		254	
	organocatalysts for the syntheses of				
	xanthenes				
14	Titanium containing periodic	Catalysis today	3.893	2012, 198,	1
	mesoporous organosilica as an			45	
	efficient catalyst for the				
	epoxidation of alkenes.				
15	Porphyrin Based Porous Organic	Journal of	6.921	2013, 299,	4
	Polymer Supported Iron (III)	Catalysis		316.	
	Catalyst for Efficient Aerobic				
	Oxidation of				
	5-hydroxymethylfurfural into 2,				
	5-furandicarboxylic acid.				
16	Highly porous organic polymer: A	ChemCatChem	4.556	2013, 5,	1
	convenient carbocatalyst for indole			1749	
	C-H activation at room				
	temperature.				

	17	Porphyrin based porous	Applied Catalysis	3.942	2013, 459,	1
		organic polymer for	A: General		41.	
		bifunctional catalyst for				
		selective oxidation and				
		Knoevenagel condensation				
		reactions.				
ĺ	18	Pd-anchored	Recyclable	-	2013, 1, 10	3
		functionalized mesoporous	Catalysis			
		materials as robust and				
		recyclable heterogeneous				
		catalyst for a series of C-C				
		bond formation reactions.				
Ì	19	A Luminescent	Chem.Commun.	6.834	2013, 49,	1
		nanoporous hybrid			7644	
		material based drug				
		delivery system showing				
		excellent theranostics				
		potential for cancer				
ĺ	20	Cu-grafted functionalized	Org.ProcessRes.	2.53	2014,	3
		mesoporous SBA-15: A	Dev.		18(1), 257.	
		novel heterogeneous				
		catalyst for facile one-pot				
		three component C-S cross				
		coupling reaction of Aryl				
		halides in water.				
	21	Triazine functionalized	J. Mater. Chem. A	7.443	2014, 2,	1
		porous organic polymer:			11642	
		Excellent CO2 storage				
		material and support for				
		designing Pd nanocatalyst				
		for C-C cross coupling				
		reactions.				
	22	Porous carbon derived via	Journal of Solid	2.133	2015, 232,	1
		KOH activation of a	State Chemistry		157-162	
		hypercrosslinked porous				
		organic polymer for				
		efficient CO2, CH4, H2				
		adsorption and high				
		CO2/N2 selectivity.				

23	Synthesis of	Polymer Chemistry	5.52	2016, 7,	1
	9,9'-Spirobifluorene-Based			1290-1296.	
	Conjugated Microporous				
	Polymers by				
	FeCl3-mediated				
	Polymerization.				
24	High-throughput	Chemistry Select	-	April,	1
	Acid-Base Tandem	(Willey-VCH),		2016	
	Organocatalysis over	Accepted, 2016			
	Hollow Tube-Shaped	(slct.201600239R1)			
	Porous Polymers and				
	Carbons				
25	Photocatalytic H ₂ Evolution	Bulletin of the	2.21	April, 2016	1
	by Pt-Loaded	Chemical Society			
	9,9'-Spirobifluorene-based	of Japan, 2016			
	Conjugated Microporous	(BCSJ-2016-0105;			
	Polymers under Visible	Accepted)			
	Light Irradiation				
3、	专利情况:				
序	专利名称	授权/申请	授权/申请号	起始日期	排
					应
号					11.
号					11.
号 4、					71
号 4、 ഭ	获奖情况:	牧时使名	据处单位	牧陆在府	71
号 4、 序 号	获奖情况: ^{奖励名称}	奖励等级	授奖单位	奖励年度	排序
号 4、 序 号	获奖情况: 奖励名称 Merit-Cum-Means	奖励等级	授奖单位 IIT-Kharagpur	奖励年度 2006	小 排 序 1
号 4、 序 号 1	获奖情况: 奖励名称 Merit-Cum-Means	奖励等级 National	授奖单位 IIT-Kharagpur, India	奖励年度 2006	小 排 序 1
号 4、 序 日 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical	奖励等级 National National	授奖单位 IIT-Kharagpur, India	奖励年度 2006 2007	小 排 序 1
号 4、 序 号 1 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and	奖励年度 2006 2007	排 序 1
号 4、 序 号 1 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial	奖励年度 2006 2007	//· 排 序 1
号 4、 序 号 1 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research	奖励年度 2006 2007	小 排 序 1
号 4、 序 号 1 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India	奖励年度 2006 2007	非 序 1
号 4、 序 号 1 2	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian	奖励年度 2006 2007 2007	非 序 1 1
号 4、 序号 1 2 3	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in	奖励等级 National National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of	奖励年度 2006 2007 2007	非 序 1 1 1
号 4、 序 号 1 2 3	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science	奖励年度 2006 2007 2007	排 序 1 1 1
号 4、 序 号 1 2 3	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science	奖励等级 National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore	奖励年度 2006 2007 2007	
号 4、 序 号 1 2 3	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test	奖励等级 National National National	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore	奖励年度 2006 2007 2007 2007	排 序 1 1 1
号 4、 序 号 1 2 3	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test (SET) for lecturer-ship in	奖励等级 National National National State level	授奖单位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore SET-Govt. of West Bengal	奖励年度 2006 2007 2007 2007	非 序 1 1 1 1
号 4、 序 号 1 2 3 4	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test (SET) for lecturer-ship in India	奖励等级 National National National State level	授奖単位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore SET-Govt. of West Bengal, India	奖励年度 2006 2007 2007 2007 2007	非 序 1 1 1
号 4、 序 号 1 2 3 4	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test (SET) for lecturer-ship in India Visiting Researcher Travel	奖励等级 National National National State level	授奖単位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore SET-Govt. of West Bengal, India Toyota central	奖励年度 2006 2007 2007 2007 2007 2007	
号 4、 序 号 1 2 3 4 5	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test (SET) for lecturer-ship in India Visiting Researcher Travel Grant	奖励等级 National National National State level International	授奖単位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore SET-Govt. of West Bengal, India Toyota central R & D Lab.	奖励年度 2006 2007 2007 2007 2007 2007 2013	川 排 序 1 1 1 1 1
号 4、 序号 1 2 3 4 5	获奖情况: 奖励名称 Merit-Cum-Means scholarship CSIR-NET in Chemical Science Graduate Aptitude Test in Engineering (GATE) in chemical science State Level Eligibility Test (SET) for lecturer-ship in India Visiting Researcher Travel Grant	奖励等级 National National National State level International	授奖単位 IIT-Kharagpur, India Council of Scientific and Industrial Research, India Indian Institute of science, Bangalore SET-Govt. of West Bengal, India Toyota central R & D Lab. Inc. Japan	奖励年度 2006 2007 2007 2007 2007 2007 2013	排 序 1 1 1 1 1 1

	6	Advanced carbon	International	Toyota central	2013	1	
		transformation (ACT-C	1	R & D Lab.			
	博-	project, Japan 上后研究题目: Heterogene	ous catalysis. CO ₂ adsor	rption with function	onalized porou	l	
	polymers and carbon						
	(ji		进性和创新性,埋论	和现实意义)	1		
		Biological photosynthesis	is highly inspiring rega	rding harvesting	solar spectrum	1 to	
	cher	mical energy. Inorganic so	miconductors are freq	luently being use	ed as an ene	rgy	
	tran	sducers, mostly worked in	ultraviolet (UV) and to	some extent in ne	ar visible ligh	ı t . ^[1]	
	Due	e to the availability of sol	ar energy, visible light	promoted photo	preactions can	be	
	desi	igned through an affordable,	cost-effective way.				
		Organic polymers having	liversity in synthesis, ad	daptable band-gap	property, can	ı be	
	intri	iguing, although still rem	ains unexplored. Adeq	juate tuning in	optical band-	gap	
	som	netimes fruitful in harves	ting visible light >58	80 nm, commor	nly observed	as	
	cha	racteristics for conjugated n	nicroporous polymers (C	CMP). ^[2,3] Thus, w	rithout any dou	ubt,	
	CMPs have immense prospect for further advancement in this area. However, owing to						
揮	the nature of bulky organic species, it would be quite difficult to control the						
±	nanoarchitectures of porous polymers together with surface and electronic properties.						
后工	Therefore, a bipyridine-pyrene based organic photosensitizer has been proposed.						
工作	(A) Pd-catalyzed Sonogashira cross coupling is an efficient platform for making a						
的	conjugated polymer comprising bipyridine-pyrene framework. Unlike others polymers,						
‴ 究	CMP-A might possess nanorods or nanosphere morphology. Bipyridine moiety in CMP-A						
计 划	could facilitate metal binding along with pyrene as photosensitizer.						
R	Br Br	$ \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$= \frac{Pd(PPh_{3})_{2}Cl_{2}}{DMF, Et_{3}N, 100}$ $Method-A$ HF	CMP-A	ja, Dov		
	Scheme 1. Representation for polymer-based photosensitizer						

(B) CO_2 conversion to valuable fine chemicals has been envisaged through N-doped SBA-15 as basic organocatalyst. Furthermore, N-sites could be exploited for adsorption of high quantity of CO_2 from a mixture of CO_2 , N₂, H₂O regarding purification of fuel gases.

博士后合作导师考核推荐表

对申请人学术水平、科研能力等方面的考核意见:			
对申请人提出的研究计划的评价(如可行性、先进性、创新之处、理	论和实	に用意义	X):
推荐意见(是否同意推荐申请优秀博士后奖励基金)。			
合作导师签字	年	月	日