中国科学院大连化学物理研究所 优秀博士后支持计划申请表

研究组: 509组

学科专业: 材料物理与化学

合作导师: 刘伟 研究员

填表日期: 2025年7月23日

中国科学院大连化学物理研究所制

姓	生 名		宋垚	性 别	Ē	 男
				民 族	汉	族
学	学历/学位		理学博士	授予博士学位时间	2025. 1	
博	士毕业院 校	中国科学院大学		专 业	物理化学	
)	站时间	2025. 1		入站性质	☑统招统分 □在职人员	
学	习 2011.9-2015.6 天津耳			所在单位/专业	所获学位	
			天津职业技7	术师范大学材料成型及控制工程	工学学士	
经历	2015. 9-2018. 6 中南林		中南林」	业科技大学化学工程与技术	工学硕士	
从	2016. 5-2018. 3 中国科学技		中国科学技	支术大学化学与材料科学学院	联合培养	
本科起	2019. 9-2024. 12 大连体		大连位	化学物理研究所物理化学	理学	博士
エ	起止年月			所在单位	职务	
作	2018. 7–2018. 11			复旦大学化学系	科研助理	
经历	2025. 1-	至今	7	大连化学物理研究所	博士后	
	博士论文题目					
	/ III	<u> </u>				

(限800字)

天然气主要组分的高效催化转化对天然气资源利用意义重大,但 其 C-H/C=O 键的高惰性使温和转化极具挑战。电催化通过施加电压 克服反应能垒,为小分子转化提供有效途径。本论文研究了天然气中 碳基小分子(CH4、C2H6与CO2)室温高效电催化转化过程,通过开 发新型反应体系与催化材料,实现低碳烷烃(CH4和C2H6)与O2催 化转化为含氧化学品,以及 CO2 还原为多碳(C2+)化学品,并利用 原位谱学和理论计算揭示 C-H/C-O 键的活化及 C-C 键的偶联机理。 主要内容如下:

(1) 开发高压-电芬顿驱动的 CH4 与 O2 催化转化新途径,在阴极区实现室温高效转化制甲酸。O2 首先在阴极银箔上经两电子还原生

成双氧水 (H_2O_2) ,随后与溶液中的 Fe^{2+} 发生均相芬顿反应,生成 Fe^{3+} 和羟基自由基 $(\bullet OH)$, $\bullet OH$ 连续活化 C-H 键将 CH_4 转化为甲酸,同时 Fe^{3+} 在阴极还原再生为 Fe^{2+} 。提高 O_2 分压可促进 H_2O_2 生成,增加 CH_4 分压能促进 CH_4 和 $\bullet OH$ 反应,提高甲酸产率和法拉第效率。该体系在 0.38V 低过电位下实现了 81.4%的甲酸法拉第效率和 11.5 mmol h^{-1} g_{Fe}^{-1} 的甲酸产率。

- (2)利用电芬顿策略实现常温常压催化 C₂H₆ 与 O₂ 转化制 C₂含氧化合物。酞菁钴催化剂高效电还原 O₂ 生成 H₂O₂,经均相芬顿过程生成•OH,进而将 C₂H₆ 转化为 C₂含氧化合物。利用流动相电解池改善 O₂ 界面传质,显著提升 H₂O₂ 产率。在-0.15 V vs. RHE 下,电流密度达 58.8 mA cm⁻²,C₂含氧化合物产率 3.5 mmol h⁻¹ g_{Fe}⁻¹。此外,最高 C₂含氧化合物法拉第效率达 35.3%。
- (3) 开发高压气体扩散电极,用于高压-电芬顿驱动 C₂H₆与 O₂ 催化转化,在大电流下实现高 C₂含氧化合物法拉第效率。该电极构建高压下稳定气/固/液三相界面,增强 O₂ 传质,从而提升 O₂ 还原为 H₂O₂ 速率。同时提高 C₂H₆ 分压增强 C₂H₆ 和•OH 反应,有效抑制 C₂H₆ 过度氧化为 CO₂。在 150 mA 电流下,C₂含氧化合物产率达 16.0 mmol h⁻¹ g_{Fe}⁻¹,选择性达 84.8%。此外,C₂含氧化合物法拉第效率最高达 71%。
- (4) 采用机械抛光法处理商业铜箔,制备表面具丰富纳米腔结构 (深度 10-20 nm、宽度 50-150 nm)的铜箔用于 CO₂ 电还原制 C₂₊ 化学品。-1.3 V vs. RHE 下,纳米腔铜箔电流密度达 18.3 mA cm⁻²,

C₂₊产物法拉第效率为65.7%,是商业铜箔的1.7倍。电化学抛光实验表明,纳米腔结构通过富集C₁物种显著促进C-C偶联反应。

	1、主持或参与项目情况:							
	序号	项目名称	项目来源	项目金额	起止年度	角色		
	1	甲烷与氮气电催化 C-N 偶 联合成有机含氮化合物	博士后科学基 金会-国家资助 博士后研究人 员计划 C 档	24 万元	2025-2027 年	主持		
入站前間								
期及								
站	2、代表性论文(5 篇以内) 注: "作者排序" 中,如为通讯作者请填写 "C"。							
后科	序 号	论文题目	期刊名	影响因子	发表年度/卷期/ 页码	排序		
研情况简	1	High-pressure electro-fenton driving CH ₄ conversion by O ₂ at room temperature	Journal of the American Chemical Society	15.6	2024, 146(9): 5834-5842	共同 一作 (第 一)		

介	2	Tailoring the d-Band centers enables Co ₄ N nanosheets to be highly active for hydrogen evolution catalysis	Angewandte Chemie International Edition	16.1	2018, 57(18): 5076-5080	共一(二导共第一)
	3	N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides	Science Advances	11.7	2020, 6(1): eaaw8113	共同 一作 (第 二)
	4	Mechanically induced Cu active sites for selective C-C coupling in CO ₂ electroreduction	Journal of Energy Chemistry	14.9	2022, 74: 198-202	共同 一作 (第 二)
	5	Regulating local charges of atomically dispersed $Mo^{\delta+}$ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media	Journal of Energy Chemistry	14.9	2022, 72: 125-132	共同 一作 (第 三)
			其他论文发表	情况		
	1	Direct electroconversion of air to nitric acid under mild conditions	Nature Synthesis	17.5	2024, 3: 76–84	5
	2	Mild-condition conversion of methane to acetic acid over MoS ₂ -confined Rh-Fe sites	Journal of the American Chemical Society	15.6	2025, 147: 14530-14540	6
	3	MoS ₂ -confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid	Nature Communications	15.7	2025, 16: 487	8
	4	Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution	Journal of Materials Chemistry A	9.5	2022, 10: 6242	4

3、专利情况:						
序号	专利名称	授权/申请	授权/申请号	起始日期	排序	
1	一种电催化甲烷和氧气转 化制备甲酸的方法	申请	202410013790.0[P]	2024-01-04	2	
4、获奖情况:						

序号	奖励名称	奖励等级	授奖单位	奖励年度	排序
1	博士研究生国家奖学金	国家级	教育部	2024年	1
2	渤海化工研究生奖学金三 等奖	所级	大连化物所	2024年	1
3	第十三届国际天然气转化 研讨会"最佳海报奖" ("Best Poster Award")	国际级学术会 议奖	第十三届国际天 然气转化研讨会	2024年	1
4	第二届大连催化+国际峰 会"SCINEXT 青年奖"	国际级学术会 议奖	第二届大连催化+ 国际峰会	2024年	1
5	高教社杯全国大学生数学 建模竞赛本科组一等奖	国家级	教育部高等教育 司、中国工业与应 用数学学会	2013 年	1
6	天津市普通高校大学数学 竞赛本科组理工类特等奖	省级	天津市教育委员 会	2012年	1

博士后研究题目: 电催化甲烷与氮气共转化制备胺类化合物

(简述研究计划的可行性、先进性和创新性, 理论和现实意义)

(1) 研究计划内容:

a. 拟设计一种串联电催化策略,将 CH4和 N2直接电化学合成有机含氮化合物的复杂反 应解耦为两个步骤: (1) 通过高压-电芬过程实现 CH_4 和 N_2 的高效同步活化,生成含碳和含 氦反应中间产物;(2)通过电化学共还原这些中间体,实现高效的 C-N 偶联反应。并设计 Cu-贵金属双金属合金及复合物催化剂,利用多活性位点协同作用实现高压-电芬顿与电化学 C-N 偶联的高效耦合。

b.拟设计阴阳双极协同催化的新反应过程,利用阳极实现同步活化 CH4 和 N2,生成含碳 /氮中间体,同时通过在阴极上电化学共还原这些中间体,实现高效的 C-N 偶联反应。

(2) 研究计划的理论和现实意义:

甲烷作为储量丰富、成本低廉的非石油绿碳资源,是化工领域备受关注的工业原料。发 展 CH4 与 N2 直接催化转化制备胺等有机含氮化合物的新技术,既可突破传统路线对 NH3 和 H₂的依赖,解决流程冗长、能耗高及碳排放量大等问题,又能实现 CH₄资源的高附加值利用。 然而,该过程涉及 CH₄的 C-H 键活化,N₂的 N≡N 键活化和 C-N 偶联三个关键反应步骤, 极具挑战性。截至目前,尚未有研究报道能够实现 CH4和 N2直接电催化合成有机含氮化合物。 因此,本研究具有重要的研究意义。

(3) 本项目的先进性和创新性体现在两个方面:

a.以 CH₄ 和 N₂ 为原料直接合成胺类化合物。

b.设计串联电催化、阴阳双极协同催化的新反应过程,实现 CH4和 N2 直接合成有机含氮

博 士 化合物。

(4) 本项目的可行性:

a. 高压-电芬顿过程同步活化 CH4 和 N2 的可行性

申请人开发了由高压-电芬顿驱动的 CH_4 与 O_2 催化转化新途径,在电解池的阴极区实现室温下高效转化制 HCOOH。该体系在 0.38 V 的低过电位下实现了高达 81.4%的 HCOOH 法拉第效率(J. Am. Chem. $Soc., 2024)。同时,申请人与合作者基于电芬顿策略,在电解池的阴极区实现了空气(<math>N_2+O_2$)直接转化制 HNO_3 (Nat. $Synth., 2024)。这些成果表明高压-电芬顿过程同步活化 <math>CH_4$ π N_2 是可行的。

b. 电化学共还原含碳/氮中间体合成有机含氮化合物的可行性

电化学 C-N 偶联是实现 CH_4 和 N_2 直接电化学合成有机含氮化合物的关键步骤。近期天津大学张兵团队首次实现了常温常压条件下电催化共还原 HCOOH 和 NO_2 -合成甲酰胺,-0.4 V vs RHE 的电位下,甲酰胺的法拉第效率达到了 29.7%(J. Am. Chem. Soc., 2022, 144, 16006)。湖南大学王双印团队成功实现了电催化 NO_3 -和 HCHO 的 C-N 偶合环化反应,高效合成乌洛托品(J. Am. Chem. Soc., 2024, 146, 19572)。青岛科技大学赖建平团队实现了电催化共还原 HCOOH 和 NO_3 -合成尿素(Adv. Mater., 2025, 2419738)。这些研究说明,高压-电芬顿过程活化 CH_4 和 N_2 生成的两类中间产物—C1 含氧化合物(HCOOH、HCHO等)和含氮氧化物(NO_3 、 NO_2 -等),可通过电化学共还原策略实现原位 C-N 偶联,高效合成有机含氮化合物,该技术路线具备充分的可行性。

c. 实验技术层面的可行性

申请人所在团队长期从事 CH_4 、 N_2 等能源小分子的低温催化转化研究,较早地在国际上发现石墨烯限域的单铁中心在室温条件下,以双氧水为氧化剂可直接将 CH_4 催化转化为 C_1 含氧化合物(Chem, 2018)。团队进一步实现了 CH_4 与 O_2 室温直接催化转化制 C_1 含氧产物(Nat. Catal., 2023)。此外,申请人与合作者成功拓展了电芬顿策略的应用范围,实现了电芬顿驱动的空气(N_2+O_2)直接转化制 HNO_3 (Nat. Synth., 2024)。这些研究基础为本项目实现 CH_4 和 N_2 的高效同步活化提供了直接技术支撑和理论支持。因此,本项目在实验技术层面具有充分的可行性。

本人承诺:申请表所填内容均真实可靠。对因虚报、伪造等行为引起的后果及法律责任均由本人承担。

本人承诺

亲

本人签字:

2025 年 7 月 23 日