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Ethanol is used as a fuel additive and as a solvent or starting reagent in many chemical
products. Due to the widespread demand for ethanol across various sectors, the global
ethanol market is projected to grow rapidly at a rate of 5.6%. Currently, bioethanol is the
primary source of ethanol used in industry and is a leading renewable biofuel, produced
primarily from agricultural sources such as potatoes, lignocellulosic biomass, and corn starch.
Although some progress has been made in coal-to-ethanol processes, the exploration of more
efficient catalytic methods—such as syngas (CO+H;) conversion and CO; hydrogenation
remains crucial. Of particular interest is the hydrogenation of CO: to ethanol, which not only
mitigates CO2 emissions but also offers a renewable fuel and valuable chemical feedstock.
This research aims to develop high-performance catalysts for ethanol synthesis through CO-
hydrogenation and syngas conversion.
Chapter 1 outlines the scope and objectives of this work. Chapter 2 presents an efficient
catalyst, K-Fe—Cu—Zn/ZrO, (KFeCuZn/ZrO,), which enhances the EtOH space time yield
(STYgon) to 5.4 mmol ge, ' h!, under optimized conditions (360 °C, 4 MPa, and 12 L gea!
h™Y). In situ/operando spectroscopic techniques and various characterizations revealed the
essential roles of K and Fe in EtOH synthesis. The introduction of Cu accelerated the
formation of CH3CH,O*, which is an important intermediate in EtOH production.
Additionally, Zn inhibited EtOH decomposition, thereby improving the efficiency of EtOH
synthesis.
Despite the promising performance of KFeCuZn/ZrO,, it falls short of industrial
requirements, necessitating the development of more advanced catalysts. Chapter 3 shows a
machine learning (ML) approach to accelerate catalyst discovery. Starting with an initial
dataset of 58 catalysts (274 data points), 24 iterations (ML predictions and experimental
validation) were conducted, resulting in the evaluation of 555 catalysts (2477 data points).
This effort led to the discovery of a Pd(0.8)-Au(0.3)/K(2.5)-Sr(1)-Fe(20)-Zn(4)
—Cd(2)-Yb(1)-Re(1)/Ce02(25%)-ZrO- catalyst with the highest STYron of 8.2 mmol gea™!
h''. More than 70 highly active catalysts were identified through this data-driven approach,
and detailed characterizations were performed to clarify the specific contributions of each
component.
In Chapter 4, syngas conversion to ethanol was explored as an alternative synthesis pathway.
A RhO,/Li,O/MgO catalyst demonstrated excellent performance, achieving 20% ethanol
selectivity and an STYgwon of 12.2 mmol ge! h'! with a CO conversion rate of 35%. This
catalyst outperformed other Rh-based catalytic systems. Characterizations and theoretical
studies highlighted the significance of Li;O-Rh interactions on the MgO surface in
modulating CO adsorption, which is critical for ethanol production. Chapter 5 is a general
conclusion. This study extensively explored highly efficient catalysts for ethanol synthesis
via CO; hydrogenation and syngas conversion. This not only advances the understanding of
catalytic mechanisms but also provides a catalyst design guideline for the development of
novel catalysts to produce value-added chemicals from low-cost and renewable feedstocks.
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